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Abstract. Through the introduction of two complex stereographic variables it is shown 
that the Schrodinger equation for the bound states of hydrogen reduces to the wave 
equation for two coupled two-dimensional harmonic oscillators. The wavefunctions 
obtained by this means are the same as those which arise using parabolic coordinates. 

1. Introduction 

It has long been known that the degeneracy of the bound states of the non-relativistic 
hydrogen atom may be described in terms of a dynamical symmetry group isomorphic 
to O(4). Schwinger (1964) used this symmetry in the momentum representation to  
derive Green’s function for the Coulomb field and a fuller discussion of the application 
of group theory to the hydrogen atom was given by Bander and Itzykson (1966). 
More recent work has been based on a coordinate transformation introduced for the 
corresponding classical problem by Kustaanheimo and Stiefel(l965) as a generalisation 
of the parabolic coordinates due to  Levi-Civita. The KS transformation was used by 
Boiteux (1972,1973) to show that the bound states of the hydrogen atom correspond 
to the energy eigenstates of a four-dimensional isotropic oscillator subject to a con- 
straint. Kennedy (1982) applied to this problem the Dirac method for dealing with 
constraints and showed in detail how the constraint equation leads to  the energy levels 
of hydrogen with the correct degree of degeneracy. The K S  transformation was also 
exploited by Duru and Kleinert (1979) in carrying through for the first time the 
Feynman path integral method to calculate the Coulomb Green’s function. This 
calculation was much improved by Ho and Inomata (1982). 

It is easy to show that the two-dimensional Coulomb wave equation is mapped 
into the equation for a two-dimensional harmonic oscillator by the introduction of 
plane parabolic coordinates. The transformation from Cartesians x, y to plane parabolic 
coordinates A ,  p may be expressed in complex form by x+iy  = $(A + ip)* ,  and was 
used by Barut and Duru (1973) to relate the two-dimensional Kepler and oscillator 
interpretations of a composite relativistic system within S0(3 ,2) .  In a later paper 
Barut, Schneider and Wilson (1979) used a coordinate transformation involving two 
complex variables to relate the three-dimensional Kepler and four-dimensional har- 
monic oscillator interpretations of a composite relativistic object in S0(4 ,2) .  They 
showed that their transformation is a generalisation of the Kustaanheimo-Stiefel 
transformation. 

In the present paper we show that the BSW transformation expressed as a generalised 
stereographic coordinate transformation when applied directly to Schrodinger’s 
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equation for the bound states of hydrogen leads to the wave equation for an isotropic 
four-dimensional harmonic oscillator with a constraint condition. The formalism shows 
that the oscillator with constraint may be regarded as two two-dimensional oscillators 
subject to the condition that their angular momenta are equal and opposite. Following 
this simple interpretation of the constraint condition and using the wavefunctions for 
a two-dimensional harmonic oscillator involving associated Laguerre polynomials, the 
energy levels and wavefunctions for hydrogen are easily deduced. The somewhat 
involved procedure used by Kennedy (1982) in applying the constraint condition to 
wavefunctions expressed as products of four Hermite polynomials is thereby avoided. 
The wavefunctions are the same as those which arise by solving Schrodinger’s equation 
in (rotational) parabolic coordinates. As is well known, these wavefunctions are the 
simultaneous eigenfunctions of the energy, the z component of the angular momentum 
and the z component of the Runge-Lenz vector. 

2. Transformation and solution of the wave equation 

The energy levels and wavefunctions for the bound states of hydrogen are given by 
the solution of Schrodinger’s equation 

((-h2/2p)V2- e Z / r ) +  = E$, E<O, (1) 

(4V2 + A / r - a4) (I, = 0 ,  (2) 

A = 8 /a ,  a 4 = - 8 E / e 2 a ,  a = h 2 / p e 2 .  (3)  

which may be rewritten as 

where 

Now introduce two complex variables lA and lB, and consider the relations 

For any chosen pair of values for lA and lB these relationi determine a unique set of 
values for the Cartesian coordinates x, y, z.  The converse is not true. In particular, 
arbitrary but equal changes in the arguments of lA and leave x, y, z unchanged. 
Writing 

U = arg I A l B ,  (6) 
equation (4) may be solved to give lA and lB in terms of D and the spherical polar 
coordinates defined in the usual way in x, y, z space: 

(7) 
Thus for any given choice of x, y, z the complex variables lA and lB are determined 
to within an arbitrary value for the angle U. This also follows from the fact that the 
group U(2) of unitary linear transformations of the complex variables CA and lB 
generates through relations (4) the group O(3) of rotations in x, y, z space, but that 
each member of O(3)  determines a member of U(2) only to within an arbitrary factor 
of modulus unity. 

5 A - -  cos(^^) ei(u++)/2, 5 - - r 1 / 2  sin(ie) e““-”’2. 
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We next express Schrodinger’s equation for the hydrogen atom in terms of the 

(8) 

new variables lA, le. It is straightforward to show that 

rV2(L(x ,  y, z )  = ( a A a A + a B a d c L ,  

[4aAaA + 4 a B a B  + A - a“( l A c A  + lBcB)](L = 0. 

where aA = a/aJA and similarly for a A ,  a, and ag. Then (2) becomes 

(9) 

Clearly the wavefunction ( L ( x , y , z )  when expressed as a function of lA and le is 
independent of U, so we must also have 

a+/ac+ = 0. (10) 

( c A a ~ - l A a A ) +  = - ( S B ~ B -  ~ B ~ B ) ( L .  (11) 

This is equivalent to the requirement that 

Equations (9) and (1 1) are together equivalent to Schrodinger’s equation (1) for 
hydrogen. But (9) is the wave equation for a four-dimensional harmonic oscillator. 
To see this more easily write 

CA = 4 1  + i q 2 ,  (12) 

[a:+a:+a:+a:+A-a4(q:+4q: +q: +q:)]$=o, (13) 

where a i  = a/aq,. This is the equation for an oscillator with frequency U and energy E 

given by 

l e  = q 3  + iq,, 
when (9) becomes 

a 2 =  ( - 8 E / e 2 a ) ” 2 = k w / h ,  A = 8 / a  = 2 p / h 2 .  (14) 

Condition (1 1) becomes 

( 4 1 a 2  - q 2 a l ) ( L  = - ( q 3 a 4 -  q d 3 ) ( L .  (15) 
This means that the four-dimensional oscillator may be regarded as two two- 
dimensional oscillators whose angular momenta must always be equal and opposite. 
Writing (L = ( L A ( q l ,  q*)(LB(q3, q4) equation (13) separates to give 

(16) (8 :  + 8: + A A  - a ‘( q: + 4:)) (LA = 0 

where A A = ~ P E A / ~ ’ ,  with a similar equation for $B so that 

A = A A +  AB. (17) 

The simultaneous eigenfunctions of the energy and angular momentum for oscillator 
A are 

(18) 

where / I  = O ,  *l, *2,.  . . ; nl  = 0 , 1 , 2 , .  . . ; ~ 5 ~ ; ~ ~ ~ ~ ~  are the associated Laguerre poly- 
nomials and C,,,,, are constants. The corresponding eigenvalues for the energy and 
angular momentum LA are: 

(LA n l  / I  = cn 1 11 (CA/ CA) 2 1 A  CA) “”” exp(-5a25A~A)~if:!1,,1(”25A5A), 

& A n l l i  = h o ( 2 n l  + 1/11 + 1) = h2h~n l l l  /2/.L, LAnll, = llh* (19) 
The eigenfunctions (LBn212 and eigenvalues for oscillator B are given by similar 
expressions with nz, 1 2 ,  CB replacing n l ,  11 and lA. Condition (15) requires that 
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l1 = - 1 2  = 1 (say) so solutions of (9) and (11)  are given by 

+ n l n z i  = + A n l i ( l A ,  L ) + B n z - i ( ~ B 9  S,)? 
with A taking the values 

A n l n z 1  = 4 a 2 ( n l  + n 2 + / / l +  1 ) .  

These expressions must also give the energy eigenfunctions and eigenvalues for the 
hydrogen atom. From (18) and (20) using (7), the wavefunctions are: 

( L n , n 2 1  = K n , n , i  e1"''/2 exp[-t( U + ~ ) l ~ ! j + l l i (  u)~!i+lrl( U )  (22) 

where 

U = a2~A[A=a2rcos2(e/2), U = a 2 1 B f B  = a 2 r  sin2( 8/2), (23) 

and where K,l,21 are constants. Equations (14) and (21) give for a' and the energy 
the values 

a' = 2/ Na, E,,,,,, =-e2/2aN2, (24) 

where N=nl+n2+II l+1 ,  and where n,=O, 1 , 2 . .  . ;  n 2 = 0 ,  1 , 2 . .  . ;  l = O ,  
*l ,  *2 , ,  . . . These expressions constitute the well known solution for the hydrogen 
atom obtained by using parabolic coordinates 5 and 77 defined by 

x = ( ( 7 p  cos 4, y = ( t ~ ) " '  sin 4, =&- 77) (25) 

(see Condon and Shortley 1953). Relations (25) are equivalent to 

5 = 2r cos2( 8/2) = 2/lAI2, 77 = 2r sin2(8/2) = 21lBI2 .  (26) 

Note that the complex stereographic transformation (4) reduces to the transformation 
to parabolic coordinates (25) when (26) is used to express formulae (7) for the complex 
variables as 

I (27) l A =  (5/2)1/2 e""+m'/2 lB = ( 77/2)1/2 e l (v -b) /2  

The wavefunctions are known to be the simultaneous eigenfunctions of the 
energy, the angular momentum about Oz and the .z component of the Runge-Lenz 
vector 

(28) 
(In the classical case M is directed along the major axis of an elliptical orbit). In terms 
of the variables lA and 

M = (1/2p)( p x L -  L x p )  - (e2/r)r. 

the operator M, is given by 

M z  = (e2a/r)(11B12aAaA- 11A12af3aB- a - 1 ( l l A 1 2 +  l l B / 2 ) ) .  (29) 

M + n , n 2 1  = [ e 2 ( % -  n l ) l ~ 1 + n l n 2 , .  (30 )  

From the preceding formulae it is straightforward to show that 
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